Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37577539

ABSTRACT

Background: Hantaviruses - dichotomized into New World (i.e. Andes virus, ANDV; Sin Nombre virus, SNV) and Old-World viruses (i.e. Hantaan virus, HTNV) - are zoonotic viruses transmitted from rodents to humans. Currently, no FDA-approved vaccines against hantaviruses exist. Given the recent breakthrough to human-human transmission by the ANDV, an essential step is to establish an effective pandemic preparedness infrastructure to rapidly identify cell tropism, infective potential, and effective therapeutic agents through systematic investigation. Methods: We established human cell model systems in lung (airway and distal lung epithelial cells), heart (pluripotent stem cell-derived (PSC-) cardiomyocytes), and brain (PSC-astrocytes) cell types and subsequently evaluated ANDV, HTNV and SNV tropisms. Transcriptomic, lipidomic and bioinformatic data analyses were performed to identify the molecular pathogenic mechanisms of viruses in different cell types. This cell-based infection system was utilized to establish a drug testing platform and pharmacogenomic comparisons. Results: ANDV showed broad tropism for all cell types assessed. HTNV replication was predominantly observed in heart and brain cells. ANDV efficiently replicated in human and mouse 3D distal lung organoids. Transcriptomic analysis showed that ANDV infection resulted in pronounced inflammatory response and downregulation of cholesterol biosynthesis pathway in lung cells. Lipidomic profiling revealed that ANDV-infected cells showed reduced level of cholesterol esters and triglycerides. Further analysis of pathway-based molecular signatures showed that, compared to SNV and HTNV, ANDV infection caused drastic lung cell injury responses. A selective drug screening identified STING agonists, nucleoside analogues and plant-derived compounds that inhibited ANDV viral infection and rescued cellular metabolism. In line with experimental results, transcriptome data shows that the least number of total and unique differentially expressed genes were identified in urolithin B- and favipiravir-treated cells, confirming the higher efficiency of these two drugs in inhibiting ANDV, resulting in host cell ability to balance gene expression to establish proper cell functioning. Conclusions: Overall, our study describes advanced human PSC-derived model systems and systems-level transcriptomics and lipidomic data to better understand Old and New World hantaviral tropism, as well as drug candidates that can be further assessed for potential rapid deployment in the event of a pandemic.

2.
Cell Rep Med ; 4(5): 101024, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37119814

ABSTRACT

RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees. STING agonists (cAIMP, diABZI, and 2',3'-cGAMP) and Dectin-1 agonist scleroglucan demonstrate the most potent, broad-spectrum antiviral function. Furthermore, STING agonists inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enterovirus-D68 (EV-D68) infection in cardiomyocytes. Transcriptome analysis reveals that cAIMP treatment rescue cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provides protection against CHIKV in a chronic CHIKV-arthritis mouse model. Our study describes innate immune signaling circuits crucial for RNA virus replication and identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses.


Subject(s)
COVID-19 , Chikungunya virus , RNA Viruses , Zika Virus Infection , Zika Virus , Animals , Mice , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chikungunya virus/physiology , Immunity, Innate
3.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711787

ABSTRACT

RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak. Therefore, it is critical to identify broad-spectrum antiviral agents. We have tested a small library of innate immune agonists targeting pathogen recognition receptors, including TLRs, STING, NOD, Dectin and cytosolic DNA or RNA sensors. We observed that TLR3, STING, TLR8 and Dectin-1 ligands inhibited arboviruses, Chikungunya virus (CHIKV), West Nile virus (WNV) and Zika virus, to varying degrees. Cyclic dinucleotide (CDN) STING agonists, such as cAIMP, diABZI, and 2',3'-cGAMP, and Dectin-1 agonist scleroglucan, demonstrated the most potent, broad-spectrum antiviral function. Comparative transcriptome analysis revealed that CHIKV-infected cells had larger number of differentially expressed genes than of WNV and ZIKV. Furthermore, gene expression analysis showed that cAIMP treatment rescued cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provided protection against CHIKV in a CHIKV-arthritis mouse model. Cardioprotective effects of synthetic STING ligands against CHIKV, WNV, SARS-CoV-2 and enterovirus D68 (EV-D68) infections were demonstrated using human cardiomyocytes. Interestingly, the direct-acting antiviral drug remdesivir, a nucleoside analogue, was not effective against CHIKV and WNV, but exhibited potent antiviral effects against SARS-CoV-2, RSV (respiratory syncytial virus), and EV-D68. Our study identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses, which can be rapidly deployed to prevent or mitigate future pandemics.

4.
PLoS Biol ; 20(11): e3001851, 2022 11.
Article in English | MEDLINE | ID: mdl-36346780

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19-associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin, a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Hippo Signaling Pathway , Antiviral Agents/pharmacology
5.
Stem Cell Res ; 15(2): 354-364, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26313525

ABSTRACT

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-α and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-α treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs--LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival.


Subject(s)
Hepacivirus/genetics , Interferon Type I/metabolism , Pluripotent Stem Cells/cytology , Apolipoprotein B-100/metabolism , Cell Differentiation/drug effects , Cell Line , Cell Lineage , Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Cytokines/genetics , Cytokines/metabolism , Gene Expression Profiling , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Hepacivirus/physiology , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Interferon Type I/genetics , Interferon-alpha/pharmacology , Liver/metabolism , Pluripotent Stem Cells/metabolism , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Sequence Analysis, RNA , Transcriptome/drug effects , Virus Replication , ras Guanine Nucleotide Exchange Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...